Distributed Temperature and Strain Discrimination with Stimulated Brillouin Scattering and Rayleigh Backscatter in an Optical Fiber

نویسندگان

  • Dapeng Zhou
  • Wenhai Li
  • Liang Chen
  • Xiaoyi Bao
چکیده

A distributed optical fiber sensor with the capability of simultaneously measuring temperature and strain is proposed using a large effective area non-zero dispersion shifted fiber (LEAF) with sub-meter spatial resolution. The Brillouin frequency shift is measured using Brillouin optical time-domain analysis (BOTDA) with differential pulse-width pair technique, while the spectrum shift of the Rayleigh backscatter is measured using optical frequency-domain reflectometry (OFDR). These shifts are the functions of both temperature and strain, and can be used as two independent parameters for the discrimination of temperature and strain. A 92 m measurable range with the spatial resolution of 50 cm is demonstrated experimentally, and accuracies of ±1.2 °C in temperature and ±15 με in strain could be achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry.

A method based on coherent Rayleigh scattering distinctly evaluating temperature and strain is proposed and experimentally demonstrated for distributed optical fiber sensing. Combining conventional phase-sensitive optical time-domain domain reflectometry (ϕOTDR) and ϕOTDR-based birefringence measurements, independent distributed temperature and strain profiles are obtained along a polarization-...

متن کامل

Thermal Effects Study on Stimulated Brillouin Light Scattering in Photonic Crystal Fiber

we investigate the temperature-dependences of the Brillouin frequency shift in three different kind of single-mode fibers using a heterodyne method for sensing temperature. Positive dependences coefficients of 0.77, 0.56 and 1.45MHz/0C are demonstrated for 25 km long single-mode fiber, 10 km long non-zero dispersion shifted fiber and 100 m photonic crystal fiber, respectively. The results indic...

متن کامل

Review of Simple Distributed BRILLOUIN Scattering Modeling for Temperature and Strain

Amalgamation of appropriated Brillouin dissipating demonstrating in optical strands utilizing a recently created calculation. The recreations of a conveyed fiber optic sensor are completed with the go for temperature and strain sensing. The practices of Brillouin scrambling in optical strands are contemplated through the backscatter flags under different working parameters along the optical fil...

متن کامل

A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications

Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various appli...

متن کامل

Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives

Optical fiber sensors based on stimulated Brillouin scattering have now clearly demonstrated their excellent capability for long-range distributed strain and temperature measurements. The fiber is used as sensing element, and a value for temperature and/or strain can be obtained from any point along the fiber. After explaining the principle and presenting the standard implementation, the latest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013